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Universal versus drive-dependent exponents for sandpile models
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We study the scaling relations of the Manna@J. Phys. A24, L363 ~1992!# model. We found that the
avalanche exponent depends crucially on whether one drives the system in the bulk or at the boundary while
the cutoff scaling exponent is invariant. Scaling relations relating these exponents are derived for various
modes of driving. It is shown numerically that the one dimensional Manna model and a recently introduced
ricepile model have the same exponents. Finally, a class of nonconserved self-organized critical models is
introduced, and a classification scheme for sandpile models is proposed.@S1063-651X~97!02104-1#

PACS number~s!: 64.60.Lx, 05.40.1j, 64.60.Ht, 05.70.Ln
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Following the introduction of the Abelian sandpile mod
~ASM! of Bak, Tang, and Wiesenfeld~BTW! @1#, a number
of self-organized critical~SOC! models, which define a num
ber of ‘‘universal classes’’ depending on their values of e
ponents, have been introduced. On the other hand, as fo
one dimensional~1D! systems, it seems that sandpile mod
show not simple finite-size scaling but multifractal scali
behaviors@2#.

Recently, however, being inspired by the experiment
ricepiles @3#, a model was proposed and demonstrated
shows a simple finite-size scaling in 1D for the avalanc
size distribution,

P~s!;s2t f s~s/L
s!, ~1!

with t51.53 ands52.20 @4–6#. This ricepile model has a
stochastic dynamics in the redistribution process of the sl
during an avalanche and is different from most previo
models, where the avalanche process is deterministic
should also be noted that the system is driven only at the
and the obtained exponentt51.53 is large compared with
other SOC models, where the exponent is usually less
the mean-field valuet53/2, a fact that has been explaine
by @5# by observing that the avalanche dimensionD stays
invariant, with type of driving, and equals the one obtain
from the linear interface model@7#.

As for the 2D ASM, it has been shown also thatt can
take a larger value when the system is driven at bound
@8,9#; t has been predicted as

t511p/2a, ~2!

with a being an opening angle at the driving point.
In this paper we study the sandpile model originally

troduced by Manna@10#, which has stochastic redistributio
process as in the ricepile model, for the 1D and 2D syste
driven in the bulk and at the boundary. By numerical sim
lation, we can determine the exponents rather accurately
ing the scaling relations which hold exactly in the pres
system. The exponents obtained for the 1D Manna mo
with a boundary driving are very close to those for t
ricepile model, which suggests that the 1D Manna mode
in the broad universality class proposed by Paczuski
Boettcher@5#. As for the 2D system, the exponents obtain
551063-651X/97/55~4!/4012~5!/$10.00
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are close to the ASM, but we found that the fractal dime
sion for an avalanche is constant for various modes of d
ing in the Manna model, which cannot be true in the AS
Based on these observations, we propose classification o
models by the level of stochasticity in the redistribution pr
cess.

A version of the Manna model we study here is defined
follows. Consider a lattice ind dimension with open bound
aries. At each lattice point, the field variableni can take an
integer valueni5$0,1, . . .% counting the number of grain
on that site. A grain is added to theni of a randomly selected
site i iteratively, and an avalanche is initiated when one
the variablesni exceeds 1. The avalanche propagates by
distributing all the grains on all the sites withni.1 to their
nearest neighborsrandomly and independentlyuntil all the
variableni ’s become less than or equal to 1. We employ
parallel updating scheme during the avalanches.

The model differs from the standard sandpile model
having randomness in the local redistribution rules. As
ready seen in extremum dynamics models@7,11–13#, the
randomness might give critical behavior also to 1D syste
with which case we begin in the following.

Let us start by introducing some exponents for scal
relations. Following the notation of Ben-Hur and Biha
@14#, the avalanche sizes and its widthw scale with the
avalanche duration timet as

s;tgst, w;tgwt. ~3!

This is illustrated in Fig. 1 for our 1D Manna model, in th
case where the grain is always added at the boundary.
merics show that

gst51.4860.03, gwt50.6860.03. ~4!

Due to the scaling relations we discuss in the followin
these two exponents are enough to characterize the cri
behavior of the present models as well as many other sa
pile models.

The distributions for the avalanche sizes, the duration
time t, and the widthw are supposed to have the scalin
forms
4012 © 1997 The American Physical Society



he
ze
e

a

ro

r

e
u

e
n

ran-
th
lar
e
hat
re
ne
ach
he
s

in
n is
tem

ua-

t-
the

fi-

e

the
del,
it
r of
ace

off

is

for
-
rge

ine

va
iz

55 4013UNIVERSAL VERSUS DRIVE-DEPENDENT EXPONENTS . . .
P~s!5
1

st f sS s

LsD , P~ t !5
1

tt t
f tS t

Ls tD ,
P~w!5

1

wtw
f wSwL D , ~5!

where thet ’s are the exponents for the distributions and t
s ’s the exponents for scaling of the cutoff with system si
L. These distribution functions are related to each oth
through the variable transformation~3!, thus we can derive
the scaling relations

gst~t21!5t t215gwt~tw21!. ~6!

Notice that for all sandpile models, the cutoff for the av
lanche width must be given directly by the system sizeL.

As noted by Ben-Hur and Biham@14#, there are some
obvious relations among these exponents. For example, f
Eq. ~3! one obtains

s;wD, D5gst /gwt , ~7!

where the exponentD is often called the dimension of the
avalanche~see the review of Paczuskiet al. @13#! because it
counts how the total mass of the avalanche scales with
spatial extent. The fact that the cutoff for the widthw is L
gives us the cutoff exponents as

s5D5gst /gwt , s t51/gwt . ~8!

From the above relations we have reduced the numbe
independent exponents to three:gst , gwt , and t, for ex-
ample.

Now we will show that another scaling law can be d
rived, using the argument which is originally introduced he
ristically by Kadanoffet al. @2# for sandpile models in gen-
eral but isexact for the present model. We will extend th
argument to derive different scaling relations for differe
ways of driving the system.

FIG. 1. Simulation results for spreading and the mass of a
lanches initiated on the boundary of an open 1D system of s
L54096. The lines are to indicate the slopes of 1.48 and 0.68.
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If one traces a particular grain, each grain propagates
domly. Each time it topples it does so to left and right wi
equal probability. Therefore the distance that a particu
grain travels is given as an ordinary random walk with tim
counted by the number of times it has toppled. Notice t
this time counting is very different from the real time, whe
often a particular grain gets stuck for a long time. If o
deposits grains randomly in the bulk, the distance that e
grain has to travel before it falls out of the system at t
boundary is of the order ofL, thus the number of topple
s0 each grain goes through is of the order ofL2, which is a
contribution of the grain to avalanches while it remains
the system. In the stationary state, every time a new grai
added to the system, one grain should go out of the sys
on average, therefore the equality

^s&5^s0& ~9!

holds, and thus we havês&'L2.
This argument was suggested by Kadanoffet al. @2# for

deterministic versions of the sandpile models, and the eq
tion ^s&'L2 has later been verified analytically for the ASM
by Dhar@15#. The implication is that the deterministic upda
ing does not introduce long range correlation between
tumbling directions of the individual grains.

As for the present model, this picture is exact by the de
nition of the model, and it leads to the scaling law

s~22t!52, or D~22t!52, ~10!

which should be valid in all dimensions providing that th
system is driven in the bulk.

On the other hand, if one deposits grains only at
boundary of the system as in the case of the ricepile mo
the average number of stepss0 that the grain moves before
falls out of the system should be estimated as the numbe
steps the grain moves before it returns to the original pl
with the upper cutoffL2:

^s0&'E
0

L2 s0
s0
3/2ds0}L. ~11!

The upper cutoff represents the case where the grain falls
through the other end of the system. From Eqs.~9! and~11!,
we obtain the scaling law in this case,

s~22t!51, or D~22t!51, ~12!

which is valid also in all dimensions when the system
driven at the boundary.

In Fig. 2, we plotstP(s) versuss/Ls with s52.20 and
t given by Eqs.~10! and ~12!, or t51.09 and 1.55, for the
bulk and the boundary depositing cases, respectively. As
the bulk deposition case@Fig. 2~a!#, the system size depen
dence in the scaling region persists even in a fairly la
system as has been pointed out@14#, but the convergence in
the cutoff region is quite convincing, thus we can determ
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the exponentt through Eq.~10! much better than direct ob
servation of the scaling region. In the case of the bound
deposition case@Fig. 2~b!#, overall convergence is very good

It is noted that Eqs.~10! and~12! are valid also in higher
dimensions, and in fact should be valid for all the undirec
sandpile models with discrete driving. Furthermore, it is
teresting that in higher dimensions one can deposit not o
at boundaries, but also at corners of various codimensi
For example, the 2D Manna model can be driven at a cor
then the average number of tumbless0 for a grain injected at
the corner will be given by the conditional probability that
survives~does not return to 0! during s0 steps of a random
walk both along thex axis and along they axis. Thus the
probability that it survives more thans0 steps in the lattices
is ~1/As0)1/As051/s0. Therefore the chance that it survive
exactlys0 steps is 1/s0

2, thus the mean lifetime for grains i
the lattice is

^s0&'E
0

L2s0
s0
2ds0} lnL, ~13!

implying the scaling relation

s~22t!50, or t52 ~14!

for deposition at a corner in the open boundary 2D latti
Finite-size scaling results of numerical simulation are giv
in Fig. 3 for bulk ~a!, boundary~b!, and corner~c! driving
with s52.70 andt ’s given by Eqs.~10!, ~12!, and ~14!,
respectively:t51.26 ~a!, 1.63 ~b!, and 2~c!.

FIG. 2. Finite-size scaling plot for 1D Manna model. We em
ploy s52.20 andt5222/s51.09 for the bulk driven system~a!,
ands52.20 andt5221/s51.55 for the boundary driven system
~b!. The system sizes areL5128, 256, 512, 1024, and 2048 for~a!,
andL5256, 1024, and 4096 for~b!.
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Thus, for the two state Manna model, we have reduce
all cases the number of independent exponents to 2, for
ample, gst and gwt , for which we obtainedgst51.48
60.03 andgwt50.6860.03 in the 1D Manna model. In
higher dimensions Ben-Hur and Biham@14# reported that
gst51.70 and gwt50.67 for 2D, and gst51.80 and
gwt50.54 for 3D, respectively. In all cases the simulat
g ’s agree well with reported values oft: 1.0960.03 for 1D
~present work!, 1.2660.03 for 2D~present work!.

For both the 1D and 2D systems, the cutoff exponents,
or the avalanche dimensionD, does not depend on the mode
of driving the system. Intuitively, this implies that the critic
state the system falls in does not depend on the ways
driving, then the stochastic dynamics would extend a
lanches in the same way once they go inside of the syst
The critical states are examined in Fig. 4, where the dens
of zero siten0 are plotted against 1/L. It can be seen tha
n0 approaches critical densitync with some power of 1/L in
the L→` limit, and the critical densities arenc50.107 for
d51 andnc50.319 ford52, respectively, and they do no
depend on the driving.

We will now discuss the connection between the Man
model studied here and other SOC models. First, we sho
point out that Eq.~12! was derived for the Oslo ricepile
model by Ref.@5# using a slightly different picture, and it ha

FIG. 3. Finite-size scaling plot for 2D Manna model. We em
ploy s52.70 andt5222/s51.26 for the bulk driven system~a!,
t5221/s51.63 for the boundary driven system~b!, andt52 for
the corner driven system~c!. The system sizes areL532, 64, 128,
and 256.
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also been argued that the avalanche dimensionD does not
depend on the way of driving. In fact, the connection b
tween the Manna model and the ricepile model is very clo
The ricepile model may be seen as an integrated versio
the Manna model, in the sense that theni should be identi-
fied as the slopes in the ricepile model. The only differen
is then that in the ricepile model the random updates alw
involve a simultaneous redistribution ofni to the left and
right neighbor, whereas it is random in our formulation
the Manna model. This difference should be insignificant
large scales. In fact, the exponents obtained for the rice
model (s52.20,t51.53) are the same with the 1D Mann
model, thus we conclude that the Manna model and the O
ricepile model are in the same universality class.

Paczuski and Boettcher@5# have demonstrated that the 1
ricepile model can be mapped to the linear interface mo
dHi /dt5d2H/dx21h(x,H) when this is driven critically
~as done by extremum dynamics! @16#. Thus, as a result, the
cutoff exponents in the 1D Manna model should indee
equal 11x, wherex51.2560.05 @16# is the roughness ex
ponent of the linear interface model in 1D. Further, for t
2D Manna model our obtained value for the expon
D52.70 is very close to the exponentD52.72560.020 for
the 2D linear interface model@13#. Thus we conjecture tha
the stochasticity in the Manna model places it into a fai
large class of models, which include the linear interfa
model, the Zaitsev model@7#, and accordingly also the sto
chastic version of the Zhang model@17#. As shown by@5#, in
1D this class further includes the ricepile model and the tr

FIG. 4. The system sizeL dependence of the zero site dens
n0. n02nc is plotted against 1/L in the logarithmic scale with
nc50.107 for the 1D system~a!, andnc50.319 for the 2D system
~b!, respectively, for various modes of driving. The data for diffe
ent driving almost overlap each other.
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block model of earthquakes@18#.
As for the 2D case, the boundary driving exponents

the ASM have been studied@8,9,19,20#, and the analytical
result for the exponents~2! has been obtained@8#. If one
compares the exponents obtained for the ASM from Eq.~2!,
t55/4, 3/2, 2 fora52p, p, p/2, with the present exponent
for the 2D Manna model,t51.26~bulk!, 1.63~boundary!, 2
~corner!, they are quite close to each other. In fact, the eq
tion ^s&'L2 @15#, thus Eq. ~10! also, holds for the bulk
driven ASM too.

However, the similarities stop here. Not only is th
Manna model in another universality class than the BT
model, as already demonstrated in@14#, but also the dimen-
sion of avalanches in 2D for the ASM depends crucially
driving. For the bulk driving, the obtained valuet55/4 @9#
leads to the avalanche dimension ofD58/3. On the other
hand,D52 for the boundary avalanche in the ASM@15,8#
because an avalanche initiated on the boundary cannot to
more than once at each site. Note that the exponentst for the
boundary avalanche in the ASM found in Ref.@8# satisfy
Eqs. ~12! and ~14! whenD52. From the present formula
~12! and ~14!, the exponentt for the boundary driven ASM
can be obtained for higher dimension by assumingD5d,
which should come from the fact that no sites topple twice
the boundary avalanche in the ASM. For high enough
mension, however, the avalanche loses its compactness
its dimensionD becomes less than the embedding dimens
d. Presumably this will happen ford.4 becauseD54 is the
mean-field value in the ASM@21#.

The dependence ofD on driving differentiates the ASM
qualitatively from the Manna model, whereD is independent
of driving.

As we have seen the stochasticity plays an important r
it is natural to expect another class is defined by introduc
more stochasticity into the model by relaxing the local co
servation law of grain. This can be done for the Man
model by adding or removing one grain to and/or from
toppling site before redistribution. The adding and remov
are done with equal probability. Then, the local conservat
now holds only on average.

This type of modification has also been considered in
ASM @22,23# and changes the system behavior drastica
the mean-field behavior is expected because the system
correlation@23#, and our preliminary simulation for the 1D
system showst51.5060.05 ~bulk!, 1.7560.05 ~boundary!
and these results are consistent with the mean-field ex
nentst53/2 ~bulk!, 7/4 ~boundary! @19#. It should be noted
that the exponents are also obtained from Eqs.~10! and~12!
with the mean-field avalanche dimensionD54 @21#.

The series of models considered above suggests the
sification of models based on degree of randomness in l
redistribution rules; Bak-Tang-Wiesenfeld type sandp
model with deterministic avalanche dynamics, the Man
and ricepile type model with stochastic avalanche dynam
but with the strict conservation law, and models with t
conservation law which holds only on average.

Note added in proof. After submission of the manuscrip
we learned that K. B. Lauritsen succeeded in deriving Eq.~2!
for the present model using a similar random walk argume
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