PHYSICAL REVIEW E VOLUME 55, NUMBER 4 APRIL 1997

Universal versus drive-dependent exponents for sandpile models
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We study the scaling relations of the Manph Phys. A24, L363 (1992] model. We found that the
avalanche exponent depends crucially on whether one drives the system in the bulk or at the boundary while
the cutoff scaling exponent is invariant. Scaling relations relating these exponents are derived for various
modes of driving. It is shown numerically that the one dimensional Manna model and a recently introduced
ricepile model have the same exponents. Finally, a class of nonconserved self-organized critical models is
introduced, and a classification scheme for sandpile models is prog&€63-651X97)02104-1

PACS numbg(s): 64.60.Lx, 05.40+j, 64.60.Ht, 05.70.Ln

Following the introduction of the Abelian sandpile model are close to the ASM, but we found that the fractal dimen-
(ASM) of Bak, Tang, and WiesenfelTW) [1], a number sion for an avalanche is constant for various modes of driv-
of self-organized criticalSOC models, which define a num- ing in the Manna model, which cannot be true in the ASM.
ber of “universal classes” depending on their values of ex-Based on these observations, we propose classification of the
ponents, have been introduced. On the other hand, as for tieodels by the level of stochasticity in the redistribution pro-
one dimensionallD) systems, it seems that sandpile modelscess.
show not simple finite-size scaling but multifractal scaling A version of the Manna model we study here is defined as
behaviorq 2]. follows. Consider a lattice id dimension with open bound-

Recently, however, being inspired by the experiment oraries. At each lattice point, the field variabie can take an
ricepiles[3], a model was proposed and demonstrated thainteger valuen;={0,1, ...} counting the number of grains
shows a simple finite-size scaling in 1D for the avalancheon that site. A grain is added to tine of a randomly selected
size distribution, site i iteratively, and an avalanche is initiated when one of

. ” the variables; exceeds 1. The avalanche propagates by re-
P(s)~s""y(s/LY), (D) gistributing all the grains on all the sites with>1 to their

with 7=1.53 ando=2.20[4—6]. This ricepile model has a nearest neighboreandomly and independentiyntil all the

stochastic dynamics in the redistribution process of the slop}é"’“"”‘bleni S b_ecome less than or equal to 1, We employ a
during an avalanche and is different from most previou arallel updatlng scheme during the avalanches. .
models, where the avalanche process is deterministic. [t T_he model dlffers_from the stand_aro_l Sa%”dp"e model in
should also be noted that the system is driven only at the topl’!avmg randqmness in the local red|str|but|on rules. As al-
and the obtained exponemt=1.53 is large compared with ready seen in .extre.mum_Qynamlcs .modé‘lsll—la, the
other SOC models, where the exponent is usually less thaﬁndomr‘ess might give prlycal behawo.r also to 1D systems,
the mean-field value=3/2, a fact that has been explained W'IE which casebwe_ begdln n the following. f i
o 5] by cbsenving that the avalanche dmensrsiays L% > 325 2 Meedeng some exponens o st
invariant, with type of driving, and equals the one obtained[14] the. avalanch(ge size and its widthw scale with the
from the linear interface modé¥]. ' ST

As for the 2D ASM, it has been shown also thatan avalanche duration timkas
take a larger value when the system is driven at boundary
[8,9]; 7 has been predicted as S~trs,  w~thwe, )

=1+ 7/2a, 2 This is illustrated in Fig. 1 for our 1D Manna model, in the
case where the grain is always added at the boundary. Nu-

with « being an opening angle at the driving point. merics show that

In this paper we study the sandpile model originally in-
troduced by Mann#l10], which has stochastic redistribution
process as in the ricepile model, for the 1D and 2D systems ¥st=1.48£0.03, 7,,=0.68+0.03. (4)
driven in the bulk and at the boundary. By numerical simu-
lation, we can determine the exponents rather accurately u$ue to the scaling relations we discuss in the following,
ing the scaling relations which hold exactly in the presenthese two exponents are enough to characterize the critical
system. The exponents obtained for the 1D Manna moddbehavior of the present models as well as many other sand-
with a boundary driving are very close to those for thepile models.
ricepile model, which suggests that the 1D Manna model is The distributions for the avalanche sige the duration
in the broad universality class proposed by Paczuski antime t, and the widthw are supposed to have the scaling
Boettcher[5]. As for the 2D system, the exponents obtainedforms

1063-651X/97/564)/40125)/$10.00 55 4012 © 1997 The American Physical Society



55 UNIVERSAL VERSUS DRIVE-DEPENDENT EXPONENT . . . 4013

7 If one traces a particular grain, each grain propagates ran-
10— 77— oo n 4 ) .
domly. Each time it topples it does so to left and right with
sl size <— . equal probability. Therefore the distance that a particular

107 F  width -+ 7 grain travels is given as an ordinary random walk with time

counted by the number of times it has toppled. Notice that

100000 this time counting is very different from the real time, where
] often a particular grain gets stuck for a long time. If one
_%_, 10000 £ deposits grains randomly in the bulk, the distance that each
s [ grain has to travel before it falls out of the system at the
& 1000 L boundary is of the order of, thus the number of topples
@ I s, each grain goes through is of the orderldf which is a
100 | contribution of the grain to avalanches while it remains in
! the system. In the stationary state, every time a new grain is
- added to the system, one grain should go out of the system
10F on average, therefore the equality
1 £ 0 Ll N ol o
1 10 100 1000 10000 100000 (s)=(so) 9
ime

~|2
FIG. 1. Simulation results for spreading and the mass of ava-hdds,' and thus we havs)~L".
lanches initiated on the boundary of an open 1D system of size IS argument was suggested by Kadareiftl. [2] for
L=4096. The lines are to indicate the slopes of 1.48 and 0.68. deterministic versions of the sandpile models, and the equa-
tion (s)~L? has later been verified analytically for the ASM

1 s 1 t by Dhar[15]. The implication is that the deterministic updat-
p(s):_7f5<_0), P(t):_q'tft(_a't>’ ing does not introduce long range correlation between the
S L t L tumbling directions of the individual grains.
1 As for the present model, this picture is exact by the defi-
R nition of the model, and it leads to the scaling law
P(W) WTW fW L 1 (5)

where ther's are the exponents for the distributions and the o(2—1)=2, or D(2—-17)=2, (10

o’s the exponents for scaling of the cutoff with system size

L. These dlstrlputmn functions are related to each _Othe(/vhich should be valid in all dimensions providing that the

through'the varl_able transformatidB), thus we can derive system is driven in the bulk.

the scaling relations On the other hand, if one deposits grains only at the

6) boundary of the system as in the case of the ricepile model,

the average number of steggthat the grain moves before it

Notice that for all sandpile models, the cutoff for the ava-falls out of the system should be estimated as the number of

lanche width must be given directly by the system dize  Steps the grain moves before it returns to the original place
As noted by Ben-Hur and BiharfiL4], there are some With the upper cutofi.?:

obvious relations among these exponents. For example, from

Eq. (3) one obtains

Ysl =) =7—1=yu(Ty—1).

(s~ [ Sdsont ap
So)~ L.
S~W°, D= 7ye/vur, @) 07 Jo SO

where the exponer is often called the dimension of the
avalanchedsee the review of Paczusét al.[13]) because it
counts how the total mass of the avalanche scales with i
spatial extent. The fact that the cutoff for the widthis L
gives us the cutoff exponents as

The upper cutoff represents the case where the grain falls off
tgwough the other end of the system. From E§sand(11),
we obtain the scaling law in this case,

o(2—7)=1, or D(2—1)=1, (12
o=D=vyst/ywt, o=Uyp. (8)

From the above relations we have reduced the number ofhich is valid also in all dimensions when the system is
independent exponents to threg;;, v,:, and 7, for ex-  driven at the boundary.
ample. In Fig. 2, we plots™P(s) versuss/L? with ¢=2.20 and
Now we will show that another scaling law can be de-7 given by Egs(10) and(12), or 7=1.09 and 1.55, for the
rived, using the argument which is originally introduced heu-bulk and the boundary depositing cases, respectively. As for
ristically by Kadanoffet al. [2] for sandpile models in gen- the bulk deposition casiFig. 2(@)], the system size depen-
eral but isexactfor the present model. We will extend the dence in the scaling region persists even in a fairly large
argument to derive different scaling relations for differentsystem as has been pointed §i#], but the convergence in
ways of driving the system. the cutoff region is quite convincing, thus we can determine
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FIG. 2. Finite-size scaling plot for 1D Manna model. We em- L
ploy 0=2.20 andr=2-2/o=1.09 for the bulk driven systeita), 0.01 L L L L L L L
ando=2.20 andr=2- 1/o=1.55 for the boundary driven system 10° 0.0001 0.01 1
(b). The system sizes ate=128, 256, 512, 1024, and 2048 f@), S/LG

andL =256, 1024, and 4096 fdb).

FIG. 3. Finite-size scaling plot for 2D Manna model. We em-

. ploy 0=2.70 andr=2—2/0=1.26 for the bulk driven systeita),
the exponent through Eq.(10) much better than direct ob- 7= 2—1Jo=1.63 for the boundary driven systefy, and =2 for

servation of the scaling region. In the case of the boundaryhe corner driven systerft). The system sizes ate=32, 64, 128
deposition casgFig. 2b)], overall convergence is very good. .4 256, T

It is noted that Eqs(10) and(12) are valid also in higher
dimensions, and in fact should be valid for all the undirected
sandpile models with discrete driving. Furthermore, it is in- _
teresting that in higher dimensions one can deposit not only Thus, for the two state Manna model, we have reduced in
at boundaries, but also at corners of various codimension&ll cases the number of independent exponents to 2, for ex-
For example, the 2D Manna model can be driven at a corneMPIe, yst and yy, for Wh'Ch we obtainedys=1.48
then the average number of tumbkgsfor a grain injected at  ~0.03 andy,,=0.68+0.03 in the 1D Manna model. In
the corner will be given by the conditional probability that it higher dimensions Ben-Hur and Bihaffi4] reported that
survives(does not return to)oduring s, steps of a random ¥st=1.70 and y,,=0.67 for 2D, and ys=1.80 and
walk both along thex axis and along thg axis. Thus the ywi=0.54 for SD, respectively. In all cases the simulated
probability that it survives more thasy steps in the lattices 'S agree well with reported values of 1.09+0.03 for 1D
is (1/\/sg)1/\/so= 1/s,. Therefore the chance that it survives (Present work 1.26+0.03 for 2D (present work

exactlys, steps is 192, thus the mean lifetime for grains in For both the 1D. and .2D systems, the cutoff exponent
the laftice is or the avalanche dimensid@h, does not depend on the modes

of driving the system. Intuitively, this implies that the critical
125 state the system falls in does not depend on the ways of
<SO>%f —gdsooc|n|_' (13 driving, then the stochastic dynamics would extend ava-
0 Sp lanches in the same way once they go inside of the system.
The critical states are examined in Fig. 4, where the densities
implying the scaling relation of zero siten, are plotted against I/ It can be seen that
Ny approaches critical density, with some power of 1/ in
o(2—7)=0, or 7=2 (14  the L—oo limit, and the critical densities ane,=0.107 for
d=1 andn;=0.319 ford=2, respectively, and they do not
for deposition at a corner in the open boundary 2D latticedepend on the driving.
Finite-size scaling results of numerical simulation are given We will now discuss the connection between the Manna
in Fig. 3 for bulk (a), boundary(b), and corner(c) driving model studied here and other SOC models. First, we should
with ¢=2.70 and7's given by Egs.(10), (12), and (14), point out that Eq.(12) was derived for the Oslo ricepile
respectively:r=1.26 (a), 1.63(b), and 2(c). model by Ref[5] using a slightly different picture, and it has
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T U block model of earthquakd4.8].
; ] As for the 2D case, the boundary driving exponents for
@ ] the ASM have been studid®,9,19,20, and the analytical
result for the exponent&) has been obtainefB]. If one

0.1 F
: compares the exponents obtained for the ASM from (Bj.

7=5/4, 3/2, 2 fora= 2, 7, 7/2, with the present exponents
for the 2D Manna modelk=1.26 (bulk), 1.63(boundary, 2

:U 001 ¢ E (corney, they are quite close to each other. In fact, the equa-
L tion (s)~L? [15], thus Eq.(10) also, holds for the bulk
= driven ASM too.
0001 o001 o1 o1 However, the similarities stop here. Not only is the
0.1 : Manna model in another universality class than the BTW
] model, as already demonstrated]i®], but also the dimen-
(b) ] sion of avalanches in 2D for the ASM depends crucially on
1 driving. For the bulk driving, the obtained value=5/4 [9]
leads to the avalanche dimension @f8/3. On the other
J hand,D=2 for the boundary avalanche in the ASNI5,8|

0.01

i because an avalanche initiated on the boundary cannot topple
more than once at each site. Note that the exponefusthe
boundary avalanche in the ASM found in R@8] satisfy
Egs.(12) and(14) whenD=2. From the present formulas
0.00(1) 001 i '0' 61 — o (12) and (14), the exponent for the boundary driven ASM

’ ‘ : can be obtained for higher dimension by assumihgd,
which should come from the fact that no sites topple twice in
the boundary avalanche in the ASM. For high enough di-
mension, however, the avalanche loses its compactness and
n.=0.107 for the 1D systerta), andn,=0.319 for the 2D system its dimensiorD becomes less than the embedding dimension

(b), respectively, for various modes of driving. The data for differ- d- Presumably this will happen far>4 becaus® =4 is the
ent driving almost overlap each other. mean-field value in the ASNI21].
The dependence dd on driving differentiates the ASM

qualitatively from the Manna model, wheleis independent
also been argued that the avalanche dimenBlodoes not  of driving.
depend on the way of driving. In fact, the connection be-  As we have seen the stochasticity plays an important role,
tween the Manna model and the ricepile model is very closey js natural to expect another class is defined by introducing
The ricepile model may be seen as an integrated version Qfore stochasticity into the model by relaxing the local con-
the Manna model, in the sense that theshould be identi-  goration law of grain. This can be done for the Manna

fied as the slopes in the ricepile model. The only differencemode| by adding or removing one grain to and/or from a

is then that in the ricepile model the random updates alW""y'?’oppling site before redistribution. The adding and removing

|r_1volve a simultaneous r_eQ|str|but|on .“‘ to the left f.*”d are done with equal probability. Then, the local conservation
right neighbor, whereas it is random in our formulation of
now holds only on average.

the Manna model. This difference should be insignificant on This type of modification has also been considered in the

large scales. In fact, the exponents obtained for the ricepilt;s\swI [22.23 and changes the system behavior drastically:

model (c=2.20,7=1.53) are the same with the 1D Manna ; e
model. thus we conclude that the Manna model and the OsIE' mean-field behavior is expected because the system loses
correlation[23], and our preliminary simulation for the 1D

ricepile model are in the same universality class.
Paczuski and Boettch&5] have demonstrated that the 1D SyStém shows=1.50+0.05 (bulk), 1.75+0.05 (boundary

ricepile model can be mapped to the linear interface modeind these results are consistent with the mean-field expo-

dH; /dt=d?H/dx?+ 5(x,H) when this is driven critically —nents7=3/2 (bulk), 7/4 (boundary [19]. It should be noted

(as done by extremum dynamjd4.6]. Thus, as a result, the that the exponents are also obtained from E&6) and(12)

cutoff exponents in the 1D Manna model should indeed with the mean-field avalanche dimensibr=4 [21].

equal 1+ y, wherey=1.25+0.05[16] is the roughness ex- The series of models considered above suggests the clas-

ponent of the linear interface model in 1D. Further, for thesification of models based on degree of randomness in local

2D Manna model our obtained value for the exponentredistribution rules; Bak-Tang-Wiesenfeld type sandpile

D=2.70 is very close to the exponedt=2.725-0.020 for model with deterministic avalanche dynamics, the Manna

the 2D linear interface mod¢lL3]. Thus we conjecture that and ricepile type model with stochastic avalanche dynamics

the stochasticity in the Manna model places it into a fairlybut with the strict conservation law, and models with the

large class of models, which include the linear interfaceconservation law which holds only on average.

model, the Zaitsev mod¢F], and accordingly also the sto- Note added in proofAfter submission of the manuscript,

chastic version of the Zhang moddl7]. As shown by{5],in  we learned that K. B. Lauritsen succeeded in deriving(EQ.

1D this class further includes the ricepile model and the trairfor the present model using a similar random walk argument.

FIG. 4. The system size dependence of the zero site density
ng. ng—n. is plotted against 1/ in the logarithmic scale with
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